Abstract
Sufficient conditions for the robust stability of a class of uncertain systems, with several different assumptions on the structure and nature of the uncertainties, can be derived in a unified manner in the framework of integral quadratic constraints. These sufficient conditions, in turn, can be used to derive lower bounds on the robust stability margin for such systems. The lower bound is typically computed with a bisection scheme, with each iteration requiring the solution of a linear matrix inequality feasibility problem. We show how this bisection can be avoided altogether by reformulating the lower bound computation problem as a single generalized eigenvalue minimization problem, which can be solved very efficiently using standard algorithms. We illustrate this with several important, commonly encountered special cases: diagonal, nonlinear uncertainties; diagonal, memoryless, time-invariant sector-bounded (Popov) uncertainties; structured dynamic uncertainties; and structured parametric uncertainties. We also present a numerical example that demonstrates the computational savings that can be obtained with our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.