Abstract
Compressive sensing is an emerging technology which can recover a sparse signal vector of dimension n via a much smaller number of measurements than n. However, the existing compressive sensing methods may still suffer from relatively high recovery complexity, such as O(n3), or can only work efficiently when the signal is super sparse, sometimes without deterministic performance guarantees. In this paper, we propose a compressive sensing scheme with deterministic performance guarantees using expander-graphs-based measurement matrices and show that the signal recovery can be achieved with complexity O(n) even if the number of nonzero elements k grows linearly with n. We also investigate compressive sensing for approximately sparse signals using this new method. Moreover, explicit constructions of the considered expander graphs exist. Simulation results are given to show the performance and complexity of the new method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.