Abstract

<p>Predicting commodity prices, particularly food prices, is a significant concern for various stakeholders, especially in regions that are highly sensitive to commodity price volatility. Historically, many machine learning models like autoregressive integrated moving average (ARIMA) and support vector machine (SVM) have been suggested to overcome the forecasting task. These models struggle to capture the multifaceted and dynamic factors influencing these prices. Recently, deep learning approaches have demonstrated considerable promise in handling complex forecasting tasks. This paper presents a novel long short-term memory (LSTM) network-based model for commodity price forecasting. The model uses five essential commodities namely bread, meat, milk, oil, and petrol. The proposed model focuses on advanced feature engineering which involves moving averages, price volatility, and past prices. The results reveal that our model outperforms traditional methods as it achieves 0.14, 3.04%, and 98.2% for root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared (R<sup>2</sup>), respectively. In addition to the simplicity of the model, which consists of an LSTM single-cell architecture that reduced the training time to a few minutes instead of hours. This paper contributes to the economic literature on price prediction using advanced deep learning techniques as well as provides practical implications for managing commodity price instability globally.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.