Abstract

Recombinant bacterial cocaine esterase (CocE) represents a potential protein therapeutic for cocaine use disorder treatment. Unfortunately, the native enzyme was highly unstable and the corresponding mutagenized derivatives, RBP-8000 and E196-301, although improving in vitro thermo-stability and in vivo half-life, were a partial solution to the problem. For cocaine use disorder treatment, an efficient cocaine-metabolizing enzyme with a longer residence time in circulation would be needed. We investigated in vitro the possibility of developing red blood cells (RBCs) loaded with RBP-8000 and E196-301 as a biocompatible system to metabolize cocaine for a longer period of time. RBP 8000 stability within human RBCs is limited (approximately 50% residual activity after 1 h at 37°C) and not different as for the free enzyme, while both free and encapsulated E196-301 showed a greater thermo-stability. By reducing cellular glutathione content during the loading procedure, in order to preserve the disulfide bonds opportunely created to stabilize the enzyme dimer structure, it was possible to produce an encapsulated protein maintaining 100% stability at least after 4 h at 37°C. Moreover, E196-301-loaded RBCs were efficiently able to degrade cocaine in a time- and concentration-dependent manner. The same stability results were obtained when murine RBCs were used paving the way to preclinical investigations. Thus, our in vitro data show that E196-301-loaded RBCs could act as efficient bioreactors in degrading cocaine to non-toxic metabolites to be possibly considered in substance-use disorder treatments. This approach should now be investigated in a preclinical model of cocaine use disorder to evaluate if further protein modifications are needed to further improve long term enzyme stability.

Highlights

  • It was recently reported that cocaine was the most commonly used illicit stimulant drug in Europe with lifetime use of 12.4 million males and 5.7 million females (European Monitoring Centre for Drugs and Drug Addiction, 2019) and that benzodiazepines, cocaine, or methamphetamine were present in 63% of opioid deaths during January–June 2018, among 13,631 opioid deaths in the 25 states (The United States Centers for Disease Control and Prevention on August 30, 2019; Gladden et al, 2019)

  • Several methods are available to extend in vivo half-life of therapeutic proteins, none surpasses the use of red blood cells (RBCs) as carriers for therapeutic enzymes (Leuzzi et al, 2016; Rossi et al, 2016)

  • By delivering the therapeutic enzymes through RBCs, PEGylation step can be avoided since the foreign enzyme is confined inside the erythrocytes, allowing it to be hidden from the immunological system and from any neutralizing antibodies that may be present in circulation

Read more

Summary

Introduction

It was recently reported that cocaine was the most commonly used illicit stimulant drug in Europe with lifetime use of 12.4 million males and 5.7 million females (European Monitoring Centre for Drugs and Drug Addiction, 2019) and that benzodiazepines, cocaine, or methamphetamine were present in 63% of opioid deaths during January–June 2018, among 13,631 opioid deaths in the 25 states (The United States Centers for Disease Control and Prevention on August 30, 2019; Gladden et al, 2019). The Unodc World Drug Report (2019) estimated that global illicit manufacture of cocaine reached an all-time high of 1,976 tons in 2017, with a 25% increase on the previous year. Addiction recovery programs are the main treatment options (Source: National Institute on Drug Abuse; National Institutes of Health; United States Department of Health and Human Services)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.