Abstract
We show that any characteristic function game (CFG) G can be always turned into an approximately equivalent game represented using the induced subgraph game (ISG) representation. Such a transformation incurs obvious benefits in terms of tractability of computing solution concepts for G . Our transformation approach, namely, AE-ISG, is based on the solution of a norm approximation problem. We then propose a novel coalition structure generation (CSG) approach for ISGs that is based on graph clustering, which outperforms existing CSG approaches for ISGs by using off-the-shelf optimization solvers. Finally, we provide theoretical guarantees on the value of the optimal CSG solution of G with respect to the optimal CSG solution of the approximately equivalent ISG. As a consequence, our approach allows one to compute approximate CSG solutions with quality guarantees for any CFG. Results on a real-world application domain show that our approach outperforms a domain-specific CSG algorithm, both in terms of quality of the solutions and theoretical quality guarantees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.