Abstract
A 3D Tröger's-base-derived microporous organic polymer with a high surface area and good thermal stability was facilely synthesized from a one-pot metal-free polymerization reaction between dimethoxymethane and triaminotriptycene. The obtained material displays excellent CO2 uptake abilities as well as good adsorption selectivity for CO2 over N2. The CO2 storage can reach up to 4.05 mmol g-1 (17.8 wt %) and 2.57 mmol g-1 (11.3 wt %) at 273 K and 298 K, respectively. Moreover, the high selectivity of the polymer toward CO2 over N2 (50.6, 298 K) makes it a promising material for potential application in CO2 separation from flue gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.