Abstract
ABSTRACTWe proposed a new class of maximum a posteriori estimators for the parameters of the Gamma distribution. These estimators have simple closed-form expressions and can be rewritten as a bias-corrected maximum likelihood estimators presented by Ye and Chen [Closed-form estimators for the gamma distribution derived from likelihood equations. Am Statist. 2017;71(2):177–181]. A simulation study was carried out to compare different estimation procedures. Numerical results revels that our new estimation scheme outperforms the existing closed-form estimators and produces extremely efficient estimates for both parameters, even for small sample sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.