Abstract

As a key pathogen of periodontitis, P. gingivalis requires support of the initial colonizing bacterium (S. gordonii preferably) to form symbiotic biofilms on gingival tissues with enhanced antibiotic resistance. Here, we report a new strategy to treat periodontitis biofilms with S. gordonii membrane-coated H2O2 self-supplied nanocomposites (ZnO2/Fe3O4@MV NPs) in a "Jenga" style. Integration of our special MV coatings enables selectively enhanced internalization of the cargos in S. gordonii, thus inducing severe damage to the foundational bacterial layer and collapse/clearance of symbiotic biofilms consequently. This strategy allows us to clear the symbiotic biofilms of S. gordonii and P. gingivalis with active hydroxyl radicals (˙OH) derived from ZnO2-Fe3O4@MV NPs in a H2O2 self-supplied, nanocatalyst-assisted manner. This "Jenga-style" treatment provides a cutting-edge proof of concept for the removal of otherwise robust symbiotic biofilms of periodontitis where the critical pathogens are difficult to target and have antibiotic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call