Abstract
Two schemes for blind optical modulation format identification (MFI), based on the singular value decomposition (SVD) and Radon transform (RT) of the constellation diagrams, are proposed. Constellation diagrams are obtained at optical signal-to-noise ratios (OSNRs) ranging from 2 to 30 dB for eight different modulation formats as images. The first scheme depends on the utilization of feature vectors composed of the singular values (SVs) of the obtained images, while the second scheme is based on applying the RT and then getting the SVs. Different classifiers are used and compared for the MFI task. The effect of varying the number of samples on the accuracy of the classifiers is studied for each modulation format. Simulation and experimental setups have been provided to study the efficiency of the two schemes at high bit rates for three dual-polarized modulation formats. A decimation approach for the constellation diagrams is suggested to reduce the SVD complexity, while maintaining high classification accuracy. The obtained results reveal that the proposed schemes can accurately be used to identify the optical modulation format blindly with classification rates up to 100% even at low OSNR values of 10 dBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.