Abstract
The calculation of chemical equilibria in detailed reactor simulations frequently requires elaborate numerical solution of the governing equations in an iterative way, which is often computationally expensive and can significantly increase the overall computation time. In order to reduce these computational costs, we introduce a ready-to-use tool, ANNH3, for calculation of equilibrium composition for synthesis and cracking of ammonia based on a neural network. This tool provides excellent agreement with the conventional approach in the range of 135–1000 °C and 1–100 bar and is ca. 100 times faster than conventional stoichiometry-based concepts by replacing the iterative solution process with neural network inference. While speed-up is significant even for the relatively simple case of ammonia synthesis and decomposition, we expect an even higher performance gain for the equilibrium calculation in reaction systems where more components and multiple reactions are involved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.