Abstract

Constructing hybrid photocatalysts with advanced structures and controllable compositions is a promising way to improve CO2 photoreduction performance. In this work, SnS2 nanosheets are grown on ZnS polyhedron cages to fabricate hierarchical ZnS@SnS2 double-shelled heterostructured cages. This design integrates ZnS cages and SnS2 nanosheets into a stable heterostructured hybrid catalyst with a hierarchical double-shelled cage-like architecture, possessing abundant active sites, quick charge separation/migration, and high CO2 adsorption capacity. Benefiting from these advantages, the optimized hierarchical ZnS@SnS2 heterostructured cages exhibit significant gas-phase CO2 photoreduction activity with a CO generation rate of 95.38 μmol g−1h−1 and 72.4% CO selectivity, which are greatly improved in comparison with those of pure ZnS cages and nanosheet-assembled SnS2 particles. Furthermore, charge carrier separation efficiency and visible light harvesting ability are further improved by constructing a ZnS@SnS2/CdS type-I/type-II complex heterostructured system through surface decoration of CdS quantum dots. The optimized ZnS@SnS2/CdS hybrid exhibits a CO generation rate of 155.57 μmol g−1h−1 and an excellent selectivity of 80.4%. This work is conducive to the design and manufacture of advanced hybrids for solar energy utilization and photocatalytic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.