Abstract

Certificate-based cryptography (CB-PKC) is an attractive public key setting, which reduces the complexity of public key infrastructure in traditional public key settings and resolves the key escrow problem in ID-based public key settings. In the past, a large number of certificate-based signature and encryption schemes were proposed. Nevertheless, the security assumptions of these schemes are mainly relied on the difficulties of the discrete logarithm and factorization problems. Unfortunately, both problems will be resolved when quantum computers come true in the future. Public key cryptography from lattices is one of the important candidates for post-quantum cryptography. However, there is little work on certificate-based cryptography from lattices. In the paper, we propose a new and efficient certificate-based signature (CBS) scheme from lattices. Under the short integer solution (SIS) assumption from lattices, the proposed CBS scheme is shown to be existential unforgeability against adaptive chosen message attacks. Performance comparisons are made to demonstrate that the proposed CBS scheme from lattices is better than the previous lattice-based CBS scheme in terms of private key size and signature size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.