Abstract
The inhibition of bromate formation is a challenge for the application of ozonation in water treatment due to the carcinogenicity and nephrotoxicity of bromate. In this study, the high-mobility lattice oxygen-rich MnOOH nanorods were synthesized successfully and applied for the bromate inhibition during catalytic ozonation in bromide and organic pollutants-containing wastewater treatment. The catalytic ozonation system using lattice oxygen-rich MnOOH nanorods exhibited an excellent performance in bromate control with an inhibition efficiency of 54.1% compared with the sole ozonation process. Furthermore, with the coexistence of 4-nitrophenol, the catalytic ozonation process using lattice oxygen-rich MnOOH nanorods could inhibit the bromate formation and boost the degradation of 4-nitrophenol simultaneously. Based on the experiments of ozone decomposition, surface manganese inactivation and reactive oxygen species detection, the inhibition of bromate could be attributed to the effective decomposition of ozone with generating more ·O2- and the reduction of bromate into bromide by lattice oxygen-rich MnOOH. The existed surface Mn(IV) on lattice oxygen-rich MnOOH can accept electrons from lattice oxygen and ·O2- to generate surface transient Mn(II)/Mn(III), in which Mn(II)/Mn(III) can promote the reduction of bromate into bromide during catalytic ozonation. This study provides a promising strategy for the development of bromate-controlling technologies in water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.