Abstract

The "shuttle effect" and slow redox reactions of Li-S batteries limit their practical application. To solve these problems, a judicious catalyst design for improved battery cycle life and rate performance is essential. Herein, this issue is addressed by modifying the Li-S battery separator using a 2D Fe2 O3 -CoP heterostructure that combines the dual functions of polar Fe2 O3 and high-conductivity CoP. The synthesized ultrathin nanostructure exposes well-dispersed active sites and shortens the ion diffusion paths. Theoretical calculations, electrochemical tests, and in situ Raman spectroscopy measurements reveal that the heterostructure facilitates the inhibition of polysulfide shuttling and enhances the electrode kinetics. A sulfur cathode constructed using the Fe2 O3 -CoP-based separator provides an astonishing capacity of 1346 mAh g-1 at 0.2 C and a high capacity retention of ≈84.5%. Even at a high sulfur loading of 5.42mg cm-2 , it shows an area capacity of 5.90 mAh cm-2 . This study provides useful insights into the design of new catalytic materials for Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.