Abstract

Due to the rapid diffusion of radioactive iodine, the demand for safe and efficient capture and storage of radioactive iodine is increasing worldwide. The use of porous carbon materials to capture iodine has aroused great interest. This work prepared porous carbon materials derived from polymetallic oxides of the zeolitic imidazolate framework (ZIF) by pyrolysis at 1000 °C. The carbon materials (CZIF-1000) have a high specific surface area of about 1110 m2/g and a total pore volume of 0.92 cm3/g. Adsorption studies have shown that the CZIF-1000 had significant adsorption performance for iodine, and the adsorption capacity can reach 790.8 mg/g at 8h. The potential mechanism of adsorption is that the carbonization causes the charge-transfer interaction and pore size distribution. Compared with the conventional adsorbents, the adsorbents showed faster kinetics and high extraction capacity for iodine. This experiment provides an effective method for designing a highly efficient adsorbent for iodine and broadens the ideas for developing new iodine extraction adsorbents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.