Abstract

Resolution and covariance predictors have been derived previously for penalized-likelihood estimators. These predictors can provide accurate approximations to the local resolution properties and covariance functions for tomographic systems given a good estimate of the mean measurements. Although these predictors may be evaluated iteratively, circulant approximations are often made for practical computation times. However, when numerous evaluations are made repeatedly (as in penalty design or calculation of variance images), these predictors still require large amounts of computing time. In Stayman and Fessler (2000), we discussed methods for precomputing a large portion of the predictor for shift-invariant system geometries. In this paper, we generalize the efficient procedure discussed in Stayman and Fessler (2000) to shift-variant single photon emission computed tomography (SPECT) systems. This generalization relies on a new attenuation approximation and several observations on the symmetries in SPECT systems. These new general procedures apply to both two-dimensional and fully three-dimensional (3-D) SPECT models, that may be either precomputed and stored, or written in procedural form. We demonstrate the high accuracy of the predictions based on these methods using a simulated anthropomorphic phantom and fully 3-D SPECT system. The evaluation of these predictors requires significantly less computation time than traditional prediction techniques, once the system geometry specific precomputations have been made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.