Abstract

The analysis of the interior scattering from open cavities with small modifications is an important task in designing a stealthy jet engine. Previous research has shown the magnetic field integral equation with the Kirchhoff approximation can be used to calculate the cavity interior scattering. However, it must repeat the expensive method of moments (MoM) solution even when the cavity is modified only slightly. In this Letter, the efficient method based on the partitioned-inverse formula and the Sherman–Morrison–Woodbury formula is employed to address this problem. It can avoid the repeated MoM direct solution. We only need to solve the lower-upper (LU) decomposition of the impedance matrix of the original cavity, and can efficiently derive the solution of the modified cavities via matrix identities without loss of accuracy. Numerical results are given to demonstrate the performance of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.