Abstract
We present an analytic evaluation of the runtime behavior of the C4.5 algorithm which highlights some efficiency improvements. Based on the analytic evaluation, we have implemented a more efficient version of the algorithm, called EC4.5. It improves on C4.5 by adopting the best among three strategies for computing the information gain of continuous attributes. All the strategies adopt a binary search of the threshold in the whole training set starting from the local threshold computed at a node. The first strategy computes the local threshold using the algorithm of C4.5, which, in particular, sorts cases by means of the quicksort method. The second strategy also uses the algorithm of C4.5, but adopts a counting sort method. The third strategy calculates the local threshold using a main-memory version of the RainForest algorithm, which does not need sorting. Our implementation computes the same decision trees as C4.5 with a performance gain of up to five times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.