Abstract

A new solution processable small molecule (DPP–CN) containing electron donor diketopyrrolopyrrole (DPP) core and cyanovinylene 4-nitrophenyl (CN) electron acceptor has synthesized for use as the donor material in the bulk heterojunction organic solar cells along with PCBM, modified PCBM i.e. F and A as electron acceptor. It showed a broad absorption in longer wavelength region having optical band gap around 1.64eV. We have used PCBM, F and A as electron acceptor for the fabrication of bulk heterojunction photovoltaic devices. The power conversion efficiency (PCE) of the BHJ devices based on DPP–CN:PCBM, DPP–CN:F and DPP–CN:A blends cast from the THF solvent is 1.83%, 2.79% and 2.83%, respectively. The increase in the PCE based on F and A as electron acceptor is mainly due to the increase in both short circuit current (Jsc) and open circuit voltage (Voc). The PCE value of the photovoltaic devices based on the blends DPP–CN:PCBM, DPP–CN:F and DDP–CN:A cast from the mixed solvents (DIO/THF) has been further improved up to 2.40%, 3.32% and 3.34%, respectively. This improvement is mainly due to the increased value of Jsc, which is attributed not only to the increase of crystallinity, but also to the morphological change in the film cast from mixed solvent. Finally, the device ITO/PEDOT:PSS/DPP–CN:A (DIO/THF cast)/TiO2/Al device shows a PCE of 3.9%. The improved device performance could be attributed to the electron transporting and hole-blocking capabilities due to the introduced TiO2 buffer layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call