Abstract

The method of adiabatic frequency conversion, in analogy with the two level atomic system, has been put forward recently and verified experimentally to achieve robust frequency mixing processes such as sum and difference frequency generation. Here we present a comparative study of efficient frequency mixing using various techniques of shortcuts to adiabaticity (STA) such as counter-diabatic driving and invariant-based inverse engineering. We show that, it is possible to perform sum frequency generation by properly designing the poling structure of a periodically poled crystal and the coupling between the input lights and the crystal. The required crystal length for frequency conversion is significantly decreases beyond the adiabatic limit. Our approach significantly improves the robustness of the process against the variation in temperature as well as the signal frequency. By introducing a single parameter control technique with constant coupling and combining with the inverse engineering, perturbation theory and optimal control, we show that the phase mismatch can be further optimized with respect to the fluctuations of input wavelength and crystal temperature that results into a novel experimentally realizable mixing scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.