Abstract
The efficient bootstrap methodology is developed for overidentified moment conditions models with weakly dependent observation. The resulting bootstrap procedure is shown to be asymptotically valid and can be used to approximate the distributions of t-statistics, the J-statistic for overidentifying restrictions, and Wald, Lagrange multiplier and distance statistics for nonlinear hypotheses. The asymptotic validity of the efficient bootstrap based on a computationally less demanding approximate k-step estimator is also shown. The finite sample performance of the proposed bootstrap is assessed using simulations in an intertemporal consumption based asset pricing model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.