Abstract

Strategies using mesenchymal stem cell (MSC)-mediated gene therapy have been developed to improve bone healing. However, transduction efficiency into MSCs by each vector is not always high. To overcome this problem, we used a modified adenoviral vector (Adv-F/RGD) with an RGD-containing peptide in the HI loop of the fiber knob domain of adenovirus type 5 (Ad5). Transduction efficiency into bone marrow-derived MSCs with Adv-F/RGD increased 12-fold compared with a vector containing the wild-type fiber (Adv-F/wt) by beta-galactosidase chemiluminescent assay. As a next step, we constructed AxCAhBMP2-F/RGD and AxCAhBMP2-F/wt carrying human bone morphogenetic protein 2 (BMP2). At the same multiplicity of infection, MSCs infected with AxCAhBMP2-F/RGD produced higher amounts of BMP2 than cells infected with AxCAhBMP2-F/wt, and also differentiated towards the osteogenic lineage more efficiently in vitro. Furthermore, using ex vivo gene transduction, we evaluated the potential for ectopic bone formation by the transduced MSCs in vivo. Transduction with AxCAhBMP2-F/RGD exhibited greatly enhanced new bone formation. These data suggest that Adv-F/RGD is useful for introducing foreign genes into MSCs and that it will be a powerful gene therapy tool for bone regeneration and other tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.