Abstract

Isoorientin is a C-glycosylated derivative of luteolin and exhibits a number of biological properties. In this study, multiple strategies were adopted to improve isoorientin production from luteolin in Escherichia coli. Isoorientin production was improved substantially by adjusting induction strategies and controlling acetic acid accumulation, with maximum isoorientin production reaching 826 mg/L. Additionally, a novel UDP-glucose synthesis pathway was reconstructed in E. coli through cellobiose phosphorylase-catalyzed phosphorolysis of cellobiose for the production of glucose 1-phosphate, which serves as a precursor in UDP-glucose formation. The results from two mechanisms of UDP-glucose formation in E. coli, cellobiose phosphorolysis and sucrose phosphorolysis, were compared. Increasing the UDP-glucose supply resulted in maximal isoorientin production reaching 1371 mg/L. Finally, isoorientin (1059 mg) was obtained from 1 L of fermentation broth by simple purification steps with a yield of 81.5%. Therefore, this study provides an efficient method for isoorientin production and a novel UDP-glucose synthesis pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.