Abstract

Raspberry ketone (RK), the main aroma compound of raspberry fruit, has applications in cosmetics, food industry, and pharmaceutics. In this study, we biosynthesized RK via the catalytic reduction of 4-hydroxybenzylidenacetone using a whole-cell biocatalyst. Reductase RiRZS1 from Rubus idaeus and glucose dehydrogenase SyGDH from Thermoplasma acidophilum were expressed in Escherichia coli to regenerate NADPH for the whole-cell catalytic reaction. Following the optimization of balancing the coexpression of two enzymes in pRSFDuet-1, we obtained 9.89 g/L RK with a conversion rate of 98% and a space-time yield of 4.94 g/(L·h). The optimum conditions are 40 °C, pH 5.5, and a molar ratio of substrate to auxiliary substrate of 1:2.5. Our study findings provide a promising method of biosynthesizing RK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call