Abstract
Current investigations on the bioengineering of female reproductive tissues have created new hopes for the women suffering from reproductive organ failure including congenital anomaly of the female reproductive tract or serious injuries. There are many surgically restore forms that constitute congenital anomaly, however, to date, there is no treatment except surgical treatment of transplantation for patients who are suffering from anomaly or dysfunction organs like vagina and uterus. Restoring and maintaining the normal function of ovary and uterus require the establishment of biological substitutes that can cover the roles of structural support for cells and passage of secreting molecules. As in the case of constructing other functional organs, reproductive organ manufacturing also needs biological matrices which can provide an appropriate condition for attachment, growth, proliferation and signaling of various kinds of grafted cells. Among the organs, uterus needs special features such as plasticity due to their amazing changes in volume when they are in the state of pregnancy. Although numerous natural and synthetic biomaterials are still at the experimental stage, some biomaterials have already been evaluated their efficacy for the reconstruction of female reproductive tissues. In this review, all the biomaterials cited in recent literature that have ever been used and that have a potential for the tissue engineering of female reproductive organs were reviewed, especially focused on bioengineered ovary and uterus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.