Abstract

Extraction of depth from images is of great importance for various computer vision applications. Methods based on convolutional neural networks are very accurate but have high computation requirements, which can be achieved with GPUs. However, GPUs are difficult to use on devices with low power requirements like robots and embedded systems. In this light, we propose a stereo matching method appropriate for applications in which limited computational and energy resources are available. The algorithm is based on a hierarchical representation of image pairs which is used to restrict disparity search range. We propose a cost function that takes into account region contextual information and a cost aggregation method that preserves disparity borders. We tested the proposed method on the Middlebury and KITTI benchmark data sets and on the TrimBot2020 synthetic data. We achieved accuracy and time efficiency results that show that the method is suitable to be deployed on embedded and robotics systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.