Abstract

This paper presents a hardware module design for the forward Binary Discrete Cosine Transform (BinDCT) and its implementation on a field programmable gate array device. Different architectures of the BinDCT module were explored to ensure the maximum efficiency. The elaboration of these architectures included architectural design, timing and pipeline analysis, hardware description language modeling, design synthesis, and implementation. The developed BinDCT hardware module presents a high efficiency in terms of operating frequency and hardware resources, which has made it suitable for the most recent video standards with high image resolution and refresh frequency. Additionally, the high hardware efficiency of the BinDCT would make it a very good candidate for time and resource-constrained applications. By comparison with several recent implementations of discrete cosine transform approximations, it has been shown that the proposed hardware BinDCT module presents the best performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.