Abstract

The ever-increasing need to ensure that code is reliably, efficiently and safely constructed has fueled the evolution of popular static binary code analysis tools. In identifying potential coding flaws in binaries, tools such as IDA Pro are used to disassemble the binaries into an opcode/ assembly language format in support of manual static code analysis. Because of the highly manual and resource-intensive nature involved with analyzing large binaries, the probability of overlooking potential coding irregularities and inefficiencies is quite high. In this paper, a light-weight, unsupervised data flow methodology is described which uses highly correlated data flow graph (CDFGs) to identify coding irregularities such that analysis time and required computing resources are minimized. Such analysis accuracy and efficiency gains are achieved by using a combination of graph analysis and unsupervised machine learning techniques which allows an analyst to focus on the most statistically significant flow patterns while performing binary static code analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.