Abstract

One of the most important features in image analysis and understanding is shape. Mathematical morphology is the image processing branch that deals with shape analysis. The definition of all morphological transformations is based on two primitive operations, i.e. dilation and erosion. Since many applications require the solution of morphological problems in real time, researching time efficient algorithms for these two operations is crucial. †The implementation of the above functions is beyond the scope of this paper. In this paper, efficient algorithms for the binary as well as the grey level dilation and erosion are presented and evaluated for an advanced associative processor. It is shown through simulation results that the above architecture is near optimal in the binary case and is also as efficient as the array processor with a 2D-mesh interconnection in the grey level case. Finally, it is proven that the implementation of this image processing machine is economically feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.