Abstract

This work describes and validates an approach for autonomously bifurcating turbulent combustion manifolds to divide regression tasks amongst specialized artificial neural networks (ANNs). This approach relies on the mixture of experts (MoE) framework, where each neural network is trained to be specialized in a given portion of the input space. The assignment of different input regions to the experts is determined by a gating network, which is a neural network classifier. In some previous studies [1–4], it has been demonstrated that bifurcation of a complex combustion manifold and fitting different ANNs for each part leads to better fits or faster inference speeds. However, the manner of bifurcation in these studies was based on heuristic approaches or clustering techniques. In contrast, the proposed technique enables automatic bifurcation using non-linear planes in high-dimensional turbulent combustion manifolds that are often associated with complex behavior due to different dominating physics in various zones. The proposed concept is validated using 4-dimensional (4D) and 5D flamelet tables, showing that the errors obtained with a given network size, or conversely the network size required to achieve a given accuracy, is considerably reduced. The effect of the number of experts on inference speed is also investigated, showing that by increasing the number of experts from 1 to 8, the inference time can be approximately reduced by a factor of two. Moreover, it is shown that the MoE approach divides the input manifold in a physically intuitive manner, suggesting that the MoE framework can elucidate high-dimensional datasets in a physically meaningful way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.