Abstract

Efficient metal-support interaction induced high catalysis performance plays a significant role in energy conversion reactions. Herein, two-dimensional (2D) MoSe2 nanosheet-coupled Pt nanoparticles as efficient bi-functional catalysts were demonstrated for hydrogen production from the methanol-assisted water-splitting reaction. The oxophilic MoSe2 component with 2D structures optimized the adsorption of CO* and H* on Pt sites as demonstrated by spectroscopic and theoretical analysis, which resulted in enhanced catalytic ability in methanol-assisted water splitting reaction. The peak current density was 2.5 times higher than that of commercial Pt/C catalyst for methanol oxidation and a small overpotential of 32 mV was demanded to achieve a current density of 10 mA cm−2 for hydrogen evolution reaction in the methanol-containing electrolyte. When serviced as both cathode and anode, a low cell voltage of 0.66 V was required at 10 mA cm−2, significantly lower than that of 1.75 V required for water splitting. The high performance can be attributed to the oxophilicity of MoSe2 and their strong metal-support interaction that promoted the charge transfer and anti-CO poisoning of Pt sites. This work would be instructive for the development of novel bi-functional catalyst platforms for methanol-assisted water splitting in hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call