Abstract

Bayesian logistic regression with a multivariate Laplace prior is introduced as a multivariate approach to the analysis of neuroimaging data. It is shown that, by rewriting the multivariate Laplace distribution as a scale mixture, we can incorporate spatio-temporal constraints which lead to smooth importance maps that facilitate subsequent interpretation. The posterior of interest is computed using an approximate inference method called expectation propagation and becomes feasible due to fast inversion of a sparse precision matrix. We illustrate the performance of the method on an fMRI dataset acquired while subjects were shown handwritten digits. The obtained models perform competitively in terms of predictive performance and give rise to interpretable importance maps. Estimation of the posterior of interest is shown to be feasible even for very large models with thousands of variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.