Abstract

Modern imaging methods rely strongly on Bayesian inference techniques to solve challenging imaging problems. Currently, the predominant Bayesian computation approach is convex optimization, which scales very efficiently to high-dimensional image models and delivers accurate point estimation results. However, in order to perform more complex analyses, for example, image uncertainty quantification or model selection, it is necessary to use more computationally intensive Bayesian computation techniques such as Markov chain Monte Carlo methods. This paper presents a new and highly efficient Markov chain Monte Carlo methodology to perform Bayesian computation for high-dimensional models that are log-concave and nonsmooth, a class of models that is central in imaging sciences. The methodology is based on a regularized unadjusted Langevin algorithm that exploits tools from convex analysis, namely, Moreau--Yoshida envelopes and proximal operators, to construct Markov chains with favorable convergence properties. ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call