Abstract
The swift advancement of convolutional neural networks (CNNs) in numerous real-world utilizations urges an elevation in computational cost along with the size of the model. In this context, many researchers steered their focus to eradicate these specific issues by compressing the original CNN models by pruning weights and filters, respectively. As filter pruning has an upper hand over the weight pruning method because filter pruning methods don’t impact sparse connectivity patterns. In this work, we suggested a Bayesian Convolutional Neural Network (BayesCNN) with Variational Inference, which prefaces probability distribution over weights. For the pruning task of Bayesian CNN, we utilized a combined version of L1-norm with capped L1-norm to help epitomize the amount of information that can be extracted through filter and control regularization. In this formation, we pruned unimportant filters directly without any test accuracy loss and achieved a slimmer model with comparative accuracy. The whole process of pruning is iterative and to validate the performance of our proposed work, we utilized several different CNN architectures on the standard classification dataset available. We have compared our results with non-Bayesian CNN models particularly, datasets such as CIFAR-10 on VGG-16, and pruned 75.8% parameters with float-point-operations (FLOPs) reduction of 51.3% without loss of accuracy and has achieved advancement in state-of-art.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.