Abstract

The Gravity Recovery And Climate Experiment (GRACE) satellite mission provides time-variable gravity fields that are commonly used to study regional and global terrestrial total water storage (TWS) changes. These estimates are superimposed by different error sources such as the north–south stripes in the spatial domain and spectral/spatial leakage errors, which should be reduced before use in hydrological applications. Although different filtering methods have been developed to mitigate these errors, their performances are known to vary between regions. In this study, a Kernel Fourier Integration (KeFIn) filter is proposed, which can significantly decrease leakage errors over (small) river basins through a two-step post-processing algorithm. The first step mitigates the measurement noise and the aliasing of unmodelled high-frequency mass variations, and the second step contains an efficient kernel to decrease the leakage errors. To evaluate its performance, the KeFIn filter is compared with commonly used filters based on (i) basin/gridded scaling factors and (ii) ordinary basin averaging kernels. Two test scenarios are considered that include synthetic data with properties similar to GRACE TWS estimates within 43 globally distributed river basins of various sizes and application of the filters on real GRACE data. The KeFIn filter is assessed against water flux observations through the water balance equations as well as in-situ measurements. Results of both tests indicate a remarkable improvement after applying the KeFIn filter with leakage errors reduced in 34 out of the 43 assessed river basins and an average improvement of about 23.38% in leakage error reduction compared to other filters applied in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.