Abstract

Non-Gaussian states are essential for many optical quantum technologies. The so-called optical quantum state synthesizer (OQSS), consisting of Gaussian input states, linear optics, and photon-number resolving detectors, is a promising method for non-Gaussian state preparation. However, an inevitable and crucial problem is the complexity of the numerical simulation of the state preparation on a classical computer. This problem makes it very challenging to generate important non-Gaussian states required for advanced quantum information processing. Thus, an efficient method to design OQSS circuits is highly desirable. To circumvent the problem, we offer a scheme employing a backcasting approach, where the circuit of OQSS is divided into some sublayers, and we simulate the OQSS backwards from final to first layers. Moreover, our results show that the detected photon number by each detector is at most 2, which can significantly reduce the requirements for the photon-number resolving detector. By virtue of the potential for the preparation of a wide variety of non-Gaussian states, the proposed OQSS can be a key ingredient in general optical quantum information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.