Abstract
We describe an efficient algorithm for the sizing of single microspheres having a known index of refraction as a function of wavelength. The algorithm employs a peak-detection routine that determines several resonant frequencies in the radiation scattered from the particle. These measured resonances are then compared with entries from a library of stored resonance locations in order to determine a few neighborhoods within which the size of the particle is likely to lie. A final step finds a local minimum of the cost function within each neighborhood, and the size estimate is determined by selecting the smallest of these local minima. The algorithm has modest computational and memory requirements, and it requires no analysis of complicated features of the resonance spectrum that would call for human intervention. Hence it could be automated for nearly real-time operation using a microprocessor. When applied to the measured resonance spectrum of a fluorescent polystyrene sphere, the algorithm finds the radius with an accuracy limited only by such factors as surface roughness, asphericity, and imperfect knowledge of the refractive index. The algorithm is currently limited to use with first-order resonances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.