Abstract

Wireless sensor networks convey mission critical data that calls for adequate privacy and security protection. To accomplish this objective, numerous intrusion detection schemes based on machine learning approaches have been developed. In addition, authentication and key agreements techniques have been developed using techniques such as elliptic curve cryptography, bilinear pairing operations, biometrics, fuzzy verifier and Rabin cryptosystems. However, these schemes have either high false positive rates, high communication, computation, storage or energy requirements, all of which are not ideal for battery powered sensor nodes. Moreover, majority of these algorithms still have some security and privacy challenges that render them susceptible to various threats. In this paper, a WSN authentication algorithm is presented that is shown to be robust against legacy WSN privacy and security attacks such as sidechannel, traceability, offline guessing, replay and impersonations. From a performance perspective, the proposed algorithm requires the least computation overheads and average computation costs among its peers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.