Abstract

The Gaussian approximation potential (GAP) is an accurate machine-learning interatomic potential that was recently extended to include the description of radiation effects. In this study, we seek to validate a faster version of GAP, known as tabulated GAP (tabGAP), by modelling primary radiation damage in 50–50 W–Mo alloys and pure W using classical molecular dynamics. We find that W–Mo exhibits a similar number of surviving defects as in pure W. We also observe W–Mo to possess both more efficient recombination of defects produced during the initial phase of the cascades, and in some cases, unlike pure W, recombination of all defects after the cascades cooled down. Furthermore, we observe that the tabGAP is two orders of magnitude faster than GAP, but produces a comparable number of surviving defects and cluster sizes. A small difference is noted in the fraction of interstitials that are bound into clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.