Abstract
Graph data management and matching similar graphs are very important for many applications including bioinformatics, computer vision, VLSI design, bug localization, road networks, social and communication networking. Many graph indexing and similarity matching techniques have already been proposed for managing and querying graph data. In similar graph matching, a user is returned with the database graphs whose distances with the query graph are below a threshold. In such query settings, a user may not receive certain database graphs that are very similar to the query graph if the initial query graph is inappropriate/imperfect for the expected answer set. To exemplify this, consider a drug designer who is looking for chemical compounds that could be the target of her hypothetical drug before realizing it. In response to her query, the traditional search system may return the structures from the database that are most similar to the query graph. However, she may get surprised if some of the expected targets are missing in the answer set. She may then seek assistance from the system by asking “Is there other query graph that can match my expected answer set?”. The system may then modify her initial query graph to include the missing answers in the new answer set. Here, we study this kind of problem of answering why-not questions in similar graph matching for graph databases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.