Abstract

A series of twisted D–π–A type emitters based on the acridine donor unit and CN‐substituted pyridine, pyrimidine, and benzene acceptor units are studied. They not only allow one to systematically probe the influence of different acceptor strengths, but also permit one to intriguingly probe the influence of tunable conformations (twist angles) within the acceptor moieties through controlling the orientation of asymmetric heteroaromatic ring relative to the donor component. Intramolecular charge‐transfer transitions are observed in all these compounds and emission wavelengths are widely tunable from deep blue to yellow not only by the general acceptor strength due to the characters of heteroarene and CN‐substitution pattern but also by the subtle control of in‐acceptor conformation (twist angles). Small triplet‐to‐singlet energy gaps (ΔEST) and significant thermally activated delayed fluorescence (TADF) characteristics are obtained in a series of D–π–A compounds with sufficient acceptor strengths and tunable in‐acceptor conformation, yielding a series of efficient blue‐green to yellow TADF emitters with promisingly high photoluminescence quantum yields of 90%–100%. Highly efficient blue‐green to yellow TADF organic light‐emitting diodes (OLEDs) having external quantum efficiencies of up to 23.1%–31.3% are achieved using these efficient TADF emitters, which are among the most efficient TADF OLEDs ever reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.