Abstract

The performance of perovskite solar cells with inverted polarity (p-i-n) is still limited by recombination at their electron extraction interface, which also lowers the power conversion efficiency (PCE) of p-i-n perovskite-silicon tandem solar cells. A MgFx interlayer with thickness of ~1 nanometer at the perovskite/C60 interface favorably adjusts the surface energy of the perovskite layer through thermal evaporation, which facilitates efficient electron extraction and displaces C60 from the perovskite surface to mitigate nonradiative recombination. These effects enable a champion open-circuit voltage of 1.92 volts, an improved fill factor of 80.7%, and an independently certified stabilized PCE of 29.3% for a monolithic perovskite-silicon tandem solar cell ~1 square centimeter in area. The tandem retained ~95% of its initial performance after damp-heat testing (85°C at 85% relative humidity) for >1000 hours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.