Abstract
AbstractSome efficient numerical schemes are proposed for solving one-dimensional (1D) and two-dimensional (2D) multi-term time fractional sub-diffusion equations, combining the compact difference approach for the spatial discretisation and L1 approximation for the multi-term time Caputo fractional derivatives. The stability and convergence of these difference schemes are theoretically established. Several numerical examples are implemented, testifying to their efficiency and confirming their convergence order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.