Abstract
This paper proposes a slurryless, highly efficient polishing method called ultrasonic vibration assisted electrochemical mechanical polishing (UAECMP) to realize 4H–SiC wafers with subnanometer surface roughness. UAECMP involves using ultrasonic vibration to simultaneously assist anodic oxidation of the SiC surface and mechanical removal of the generated oxide layer. The performance of UAECMP was evaluated by experiments and theoretical analyses. For a 4H–SiC (0001) surface, UAECMP achieved a material removal rate (MRR) of 14.54 μm/h, which was 4.5 times greater than that of ordinary electrochemical mechanical polishing (ECMP) and 290 times greater than that of mechanical polishing. Ultrasonic vibration increased the anodic oxidation rate by introducing local transient strain to the SiC surface and increasing the temperatures of the polishing area and electrolyte. The effect increased with the amplitude of the ultrasonic vibration. However, increasing the ultrasonic vibration amplitude also increased the surface roughness due to the large fluctuations of polishing marks caused by the grinding stone and SiC surface impact and the increasing residual oxide. Therefore, we propose a high-efficiency and -quality polishing process for SiC wafers that combines UAECMP and ECMP. The proposed polishing process may help simplify the existing manufacturing process for SiC wafers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.