Abstract

We present a novel approach for efficient and self-tuning query expansion that is embedded into a top-k query processor with candidate pruning. Traditional query expansion methods select expansion terms whose thematic similarity to the original query terms is above some specified threshold, thus generating a disjunctive query with much higher dimensionality. This poses three major problems: 1) the need for hand-tuning the expansion threshold, 2) the potential topic dilution with overly aggressive expansion, and 3) the drastically increased execution cost of a high-dimensional query. The method developed in this paper addresses all three problems by dynamically and incrementally merging the inverted lists for the potential expansion terms with the lists for the original query terms. A priority queue is used for maintaining result candidates, the pruning of candidates is based on Fagin's family of top-k algorithms, and optionally probabilistic estimators of candidate scores can be used for additional pruning. Experiments on the TREC collections for the 2004 Robust and Terabyte tracks demonstrate the increased efficiency, effectiveness, and scalability of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.