Abstract

Abstract The iron oxide surface was modified with succinic acid moiety and the adsorbent obtained, Fe-SUC, was evaluated for the adsorption of U(VI) (Uranium (VI)) from aqueous solution. The Fe-SUC was characterized by FT-IR (Fourier Transform Infrared Spectroscopy), Raman spectroscopy, thermogravimetry, X-ray diffraction, SEM-EDX (Scanning Electron Microscope - Energy-dispersive X-ray Spectroscopy), and particle size analysis. The adsorption behavior of U(VI) on Fe-SUC was studied as a function of pH, contact time, and concentration of U(VI) in the aqueous phase. The adsorption of U(VI) increased with increase in the pH of aqueous phase, and the adsorption saturation occurred at pH = 6. The kinetic data obtained for the adsorption of U(VI) on Fe-SUC were modeled with the pseudo-first-order and pseudo-second-order rate models. Similarly, the U(VI) adsorption isotherm was fitted with Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption isotherm models. The Langmuir adsorption capacity of U(VI) on Fe-SUC was about ∼176 mg g−1. The selectivity of the adsorbent toward U(VI) was evaluated in the presence of several possible interfering ions. The adsorbed U(VI) was recovered by 0.5 M sodium carbonate solution and the spent adsorbent was tested for its reusability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.