Abstract

Message authentication, which refers to source authentication and message integrity, is an essential security service, especially in emerging networks such as peer-to-peer, Device-to-Device, LPWAN (such as NB-IoT, LTE-M or SigFox) and vehicle to vehicle. Traditionally, message authentication schemes handled at upper layers of the protocol stack. Such schemes require multiple rounds and multiple operations per round, which results in a considerable overhead in terms of latency and required resources. Recently, many research works have shifted towards investigating the design of new security solutions at the physical layer (PLS). Although data confidentiality and device authentication schemes have been introduced at the physical layer, yet, no PLS message authentication scheme has been presented. In this paper, we propose a dynamic message authentication algorithm (keyed hash function) that makes use of a secret session key in addition to the random characteristics of the physical channel. Moreover, the cryptographic primitives are dynamic and get updated in a lightweight manner for every input frame symbol. Security and performance analysis were conducted to validate the efficiency and robustness of the proposed scheme. The results confirmed that the proposed authentication scheme exhibits a high level of security with minimum overhead in terms of delay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.