Abstract

In recent years, IoT has opened new opportunities for the development of various industries to improve people’s lives. Vehicular <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ad hoc</i> network (VANET) uses IoT applications for secure communication among the vehicles and to improve road safety and traffic management. In VANETS, the authentication of the vehicular access control is a crucial security service for both intervehicle and vehicle–roadside unit communications. Another criteria is all the messages should be unaltered in the delivery. Meanwhile, vehicles have to be prevented from the misuse of private information and the attacks on their privacy. Also, limited bandwidth, high mobility and density of vehicles, and scalability are few other challenges in VANETS. A number of research works are focusing on providing the anonymous authentication with preserved privacy and security in VANETS. In this article, we proposed a new certificateless aggregate signature-based authentication scheme for VANETS. Our scheme avoids the complex certificate management problem from public-key infrastructure and key escrow problem from an identity-based framework. Also, aggregate signature aggregates various individual signatures on different messages from different vehicles into a single signature, which in turn results in the reduction of verification time and storage space at the roadside unit. Our scheme can prevent malicious vehicles from disrupting the security features of VANETS. Moreover, our scheme does not use the pairing operation, which is the most expensive operation than others in modern cryptography, thus significantly reduces the computation overhead. Security and performance analysis shows that our scheme is more secure and efficient than current schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.