Abstract

The rising costs and demand of electricity for high-performancecomputing systems pose difficult challenges to system administrators that are trying to simultaneously reduce operating costs and offer state-of-the-art performance. However, system performance and energy consumption are often conflicting objectives. Algorithms are necessary to help system administrators gain insight into this energy/performance trade-off. Through the use of intelligent resource allocation techniques, system administrators can examine this trade-off space to quantify how much a given performance level will cost in electricity, or see what kind of performance can be expected when given an energy budget. A novel algorithm is presented that efficiently computes tight lower bounds and high quality solutions for energy and makespan. These solutions are used to bound the Pareto front to easily trade-off energy and performance. These new algorithms are shown to be highly scalable in terms of solution quality and computation time compared to existing algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.