Abstract

Previously, we investigated the definition and applicability of the fuzzy integral (FI) for nonlinear multiple kernel (MK) aggregation in pattern recognition. Kernel theory provides an elegant way to map multi-source heterogeneous data into a combined homogeneous (implicit) space in which aggregation can be carried out. The focus of our initial work was the Choquet FI, a per-matrix sorting based on the quality of a base learner and learning was restricted to the Sugeno λ-fuzzy measure (FM). Herein, we investigate what representations of FMs and FIs are valid and ideal for nonlinear MK aggregation. We also discuss the benefit of our approach over the linear convex sum MK formulation in machine learning. Furthermore, we study the Möbius transform and k-additive integral for scalable MK learning (MKL). Last, we discuss an extension to our genetic algorithm (GA) based MKL algorithm, called FIGA, with respect to a combination of multiple light weight FMs and FIs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.